Elemen
Elemen atau anggota (bahasa inggris: member) dari suatu himpunan dalam matematika adalah objek-objek matematika tertentu yang membentuk himpunan itu.Himpunan
Penulisan A = {1, 2, 3, 4} berarti bahwa elemen-elemen himpunan A adalah bilangan 1, 2, 3 dan 4. Himpunan elemen-elemen A, misalnya {1, 2}, merupakan subset A.Himpunan itu sendiri dapat merupakan elemen. Misalnya ada himpunan B = {1, 2, {3, 4}}. Elemen-elemen B bukan 1, 2, 3, dan 4. Melainkan, hanya ada tiga elemen B, yaitu bilangan 1 dan 2, dan himpunan {3, 4}.
Elemen-elemen suatu himpunan dapat berupa apa saja. Misalnya, C = { merah, hijau, biru }, adalah suatu himpunan yang elemen-elemennya adalah warna-warna merah, hijau dan biru.
Himpunan adalah sekelompok atau kumpulan benda/ obyek yang anggotanya bisa didefinisikan atau ditentukan secara jelas. Jadi, objek himpunan harus dapat didefinisikan secara jelas sehingga bisa dibedakan antara objek yang termuat atau yang tidak termuat dalam sebuah himpunan.
Himpunan adalah salah satu konsep penting dan mendasar dalam ilmu matematika modern, dan oleh karenanya, studi mengenai struktur kemungkinan himpunan dan teori himpunan, sangatlah berguna.
Teori himpunan yang di ciptakan pada sekitar akhir abad ke-19 ini sekarang ialah bagian yang terbesar dalam pendidikan matematika yang mulai diperkenalkan bahkan sejak tingkat sekolah dasar. Teori ini adalah merupakan bahasa untuk menjelaskan matematika modern.
Teori himpunan dapat dianggap sebagai sebuah dasar yang membangun hampir semua aspek dari matematika dan merupakan sumber dari mana semua matematika tersebut diturunkan.
Notasi Himpunan
Pada umumnya, nama himpunan itu ditulis dengan menggunakan huruf besar S, A dan B, sementara anggota himpunnya ditulis dengan menggunakan huruf kecil (a, c dan z).Himpunan-himpunan bilangan yang cukup dikenal, seperti bilangan kompleks, riil, bulat, dan sebagainya, menggunakan notasi yang khusus.
Himpunan dapat didefinisikan dengan dua cara, yaitu:
- Enumerasi, yaitu mendaftarkan semua anggota himpunan. Jika terlampau banyak tetapi mengikuti pola tertentu, dapat digunakan elipis (...).
- Pembangun himpunan, tidak dengan mendaftar, tetapi dengan mendeskripsikan sifat-sifat yang harus dipenuhi oleh setiap anggota himpunan tersebut.
Himpunan A tidak mungkin ada, karena jika A ada, berarti harus mengandung anggota yang bukan merupakan anggotanya. Namun jika bukan anggotanya, lalu bagaimana mungkin A bisa mengandung anggota tersebut.
Himpunan Kosong
Apabila himpunan {apel, jeruk, mangga, pisang} mempunyai anggota-anggota apel, jeruk, mangga, dan pisang. Himpunan lain, semisal {5, 6} mempunyai dua anggota, yaitu bilangan 5 dan 6.Maka kita boleh mendefinisikan sebuah himpunan yang tidak memiliki anggota apa pun. Himpunan ini disebut yaitu himpunan kosong.
Himpunan kosong tidak mempunyai anggota apa pun, dan ditulis sebagai:
Hukum Himpunan
hukum suatu himpunan yaitu terdiri dari:- Hukum Komutatif
- p ∩ q : q ∩ p
- p ∪ q : q ∪ p
- Hukum Asosiatif
- (p ∩ q) ∩ r : p ∩ (q ∩ r)
- (p ∪ q) ∪ r : p ∪ (q ∪ r)
- Hukum Distributif
- p ∩ (q ∪ r) : (p ∩ q) ∪ (p ∩ r)
- p ∪ (q ∩ r) : (p ∪ q) ∩ (p ∪ r)
- Hukum Identitas
- p ∩ S : p
- p ∪ ∅ : p
- Hukum Ikatan
- p ∩ ∅ : ∅
- p ∪ S : S
- Hukum Negasi
- p ∩ p’ : ∅
- p ∪ p’ : S
- Hukum Negasi Ganda
- (p’)’ : p
- Hukum Idempotent
- p ∩ p : p
- p ∪ p : p
- Hukum De Morgan
- (p ∩ q)’ : p’ ∪ q’
- (p ∪ q)’ : p’ ∩ q’
- Hukum Penyerapan
- p ∩ (p ∪ q) : p
- p ∪ (p ∩ q) : p
- Negasi S dan ∅
- S’ : ∅
- ∅’ : S
Bilangan
Bilangan adalah suatu konsep matematika yang digunakan untuk pencacahan dan pengukuran. Simbol ataupun lambang yang digunakan untuk mewakili suatu bilangan disebut sebagai angka atau lambang bilangan. Dalam matematika, konsep bilangan selama bertahun-tahun lamanya telah diperluas untuk meliputi bilangan nol, bilangan negatif, bilangan rasional, bilangan irasional, dan bilangan kompleks.Prosedur-prosedur tertentu yang mengambil bilangan sebagai masukan dan menghasil bilangan lainnya sebagai keluran, disebut sebagai operasi numeris. Operasi uner mengambil satu masukan bilangan dan menghasilkan satu keluaran bilangan. Operasi yang lebih umumnya ditemukan adalah operasi biner, yang mengambil dua bilangan sebagai masukan dan menghasilkan satu bilangan sebagai keluaran. Contoh operasi biner adalah penjumlahan, pengurangan, perkalian, pembagian, perpangkatan, dan perakaran. Bidang matematika yang mengkaji operasi numeris disebut sebagai aritmetika.
Macam-Macam Bilangan
Terdapat berbagai macam jenis bilangan, berikut ini adalah penjelasan tentang macam-macam bilangan beserta contohnya lengkap.Bilangan Asli
Pengertian bilangan asli adalah bilangan positif yang di mulai dari bilangan satu keatas. Contohnya: N = {1, 2, 3, 4, 5, 6, 7….}Bilangan Bulat
Pengertian bilangan bulat adalah himpunan bilangan bulat negatif, bilangna nol dan bilangan bulat positif. Contohnya: B = {…., -4, -3, -2, -1, 0, 1, 2, 3, 4,…..}Bilangan Cacah
Pengertian bilangan cacah adalah himpunan bilangan yang terdiri bilangan positif danb nol. Contohnya : C = {0, 1, 2, 3, 4, 5, 6, 7, 8,….}Bilangan Prima
Pengertian bilangan prima adalah bilangan yang tidak dapat dibagi oleh bilangan lainnya kecuali bilangan itu sendiri dan 1. Contohnya: P = {2, 3, 5, 7, 11, 13, 17, …..}Bilangan Nol
Pengertian bilangan nol adalan bilangan nol (0) itu sendiri. Contohnya: N = {0}Bilangan Pecahan
Pengertian bilangan pecahan adalah bilangan yang dapat dinyatakan dalam bentuk a/b dengan a dan b adalah bilangan bulat dan b ≠ 0. Bilangan a disebut dengan pembilang dan b disebut dengan penyebut. Contohnya: H = { ⅓, ⅔, ⅛, ⅝, ….. }Keterangan: 4/2 = 2, berarti 4/2 bukan bilangan pecahan.
Bilangan Rasional
Pengertian bilangan rasional adalah bilangan yang dinyatakan dalam bentuk a/b dengan a dan b merupakan anggota bilangan bulat dan b ≠ 0. Contohnya: R = { ¼, ¾, …. }Bilangan Irrasional
Pengertian bilangan irrasional adalah himpunan bilangan yang tidak dapat dinyatakan dalam bentuk pecahan atau bilangan sekain bilangan rasional. Contohnya : I = { √2, √3, √5, √6, √7, ….. }Keterangan √9 = 3 berarti √9 bukan bilangan irrasional.
Bilangan Real
Pengertian bilangan real adalah himpunan bilangan berupa gabungan antara bilangan rasional dan bilangan irasional. Contohnya: R = { 0, 1, ¼, ⅔, √2, √5, ….. }Bilangan Negatif
Pengertian bilangan negatif adalah bilangan yang bernilai negatif. Contohnya: N = { -3, -5, ¼, …. }Keterangan -1/-4 = ¼, jadi -1/-4 bukan bilangan negatif.
Bilangan Positif
Pengertian bilangan positif adalah bilangan yang bernilai positif selain nol. Contohnya: P = {2, 3, 4, 5, ¼, ….}Bilangan Genap
Pengertian bilangan genap adalah bilangan-bilangan yang akan habis jika dibagi menjadi 2. Contohnya: Ge = {2, 4, 6, 8, 10, 12, ….}Bilangan Ganjil
Pengertian bilangan ganjil adalah bilangan yang jika dibagi 2 maka akan tersisa 1 atau bilangan yang dapat dinyatakan dengan 2n-1 dengan n adalah bilangan bulat. Contohnya: Ga = {-3, -1, 1, 3, 5, 7, 9, 11, …. }Bilangan Komposit
Pengertian bilangan komposit adalah bilangan asli yang lebih besar dari 1 tapi bukan termasuk dalam bilangan prima. Contohnya: K = {4, 6, 8, 9, 10, 12, ….}Bilangan Riil
Pengertian Bilangan Riil adalah bilangan yang dapay ditulis dalam bentuk desimal. Contohnya: L = { 5/8, log 10, ….}Bilangan Imajiner
Pengertian bilangan imajiner adalah bilangan i (satuan imajiner), dimana i merupakan lambang bilangan baru yang bersifat i2 = -1. Contohnya: I = {i, 4i, 5i, …..}Bilangan Kompleks
Pengertian bilangan kompleks adalah bilangan yang anggotanya a+bi, dimana a,b ϵ R, i2 = -1. Dengan a bagian bilangan riil dan b bagian bilangan imajiner. Contohnya K = {2-3i, 8+2, …..}Bilangan Kuadrat
Pengertian bilangan kuadrat adalah bilangan yang dihasilkan dari perkalian suatu bilangan dengan bilangan itu sendiri sebanyanyak dua kali dan disimbolkan dengan pangkat 2.Contohnya : K = {22, 32,42,52,62,….}
Komentar
Posting Komentar